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Multivariate analysis is that branch of statistics which is devoted to

summarizing the relationships of sets of dependent variables. It includes,

for example, principal comp° tent. analysis or discriminant analysis, where

the problem is developed in the statistical context of determining a linear

combination of a given set of variables that has a larger variance than any

other linear combination, or that best differentiates among several groups.

The detailed theory and trends of extensive use particularly in behavioral

science research will be introduced by such books as those by Cooley and

Lohnes [1971], Rulon [1967] and Tatsuoka [1971].

Those techniques will be useful in the realm of EEG pattern analysis,

since the individual patterns may be assumed to be single points located in

R multidimensional space. Hence, several multivariate techniques have al-

ready been taken up recently in this field: step-wise discriminant.anal!.sis

[SWDA] to average evoked potentials [Donchin et al,, 1970], component analy-

sis to spectra, and the like. Particularly, it is with the hope that appli-
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cation of mult;Nariate analysis will facilitate an dealing with taxonomic

or classification problem of EEG.

The purpose of this report is to describe sections of our studies in

making use of the multivariate mathematical models to quantitative discrim-

ination of EEG patterns among the groups of normal and several types of

mentall retarded. We outline the preliminary approach in applying the

techniques of principal component analysis and discriminant analysis.

1. MATERIAL AND DATA PROCESSING

Thirty-eight EEG pattern samples of 10 second epoch during resting

condition were extracted from three groups of mentally retarded, namely,

the predisposed [Group P], the exogenous [Group E] and the Down's syndrome

[Group D], who ranged in age from 7 to 41 years. Those typical samples of

each group, 11, 13 and 14 respectively, were selected from more than four

hundred cases of the mentally retarded that were clinically examined. The

subjects with evidence of any epileptic and other neurological signs were

excluded in selection.

As controls, 32 normal samples ranging from 4 days to 20 years of age

were also used [Group N], which consisted of the younger 17 samples ranged

up to 6 years [ Group N1] and the other 15 samples matched In age to the re-

tarded [Group N2]. These were extracted from the Gibbs' Atlas [1951].

Data 'processing was performed in three steps. In the beginning, EEG

patterns were digitized by A/D conversion of sample waves on the magnetic

tape and were punched automatically in 8 bit paper tape for computer pro-

cessing, using TEAC R-400/ ATAC 501-10/ TH800 system at the laboratory.

The binary coded decimal outputs thus obtained were then used to

2 -



computer processing on multiple variables, listed in Table 1, to gain over-

all informations of each pattern. Figure 1 shows the flo' of data process-

ing except that in auto/cross correlation and spectrum analysis, and its

computer program is also given in. the Appendix.

The final step is to apply the component analysis and the discriminant

analysis to sample values of variables obtained. Since the variables to

use should be limited in number at these procedures, due to the limit of

computer memory, 26 variables were selected. Those are marked by Xl.to X26.

2. COMPONENT ANALYSIS

Suppose the random p-dimensional vector X' [xl,x2,..,xp] has the

variance and covariance matrix E. We shall assume that the mean vector is

0 and x's have the unit variance. The object of component analysis is to

economize in the number of variates, and for that, is to seek for a linear

combination of type Z = a'X which maximizes variance.

Let a be a p-dimensional column vector such that a'a = 1. Tnen the

variance of Z is

E[a'X]2 = E[aIXX'a] = a' Ea = a'Ra [1]

where R is the correlation matrix.

To determine the normalized linear combination a'X with maximum %ari-

ance, we must find a vector a satisfying a'a = 1 which maximizes [1]. In

order to get a solution, we should seek for a satisfying

[R- Ala = 0 [2]

where A is a Lagrange multiplier. If a satisfies [2] and a'a = 1, then the
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variance of a'X is X. Thus for the maximum variance we should use in [2]

the largest x, namely, xi.

Let al be a normalized solution of

- = 0 . [3]

Then :I = aCX is a linear combination with maximum variance, and is called

the first component. Furthermore, we may find another vector a2 correspond-

ing to the second largest root A2 of [2], such that Z2 = a2'X has maximum

variance of all linear combinations uncorrelated with Z1. Z2 is called the

second component. This procedure is carried on, and we may thus transform

to new variates Z1, Z2,.., Z which are uncorrelated and have variances A1,

A2,.., Ap in decreasing order.1

The results are shown in Table 2. It describes the coefficients of

first seven linear combinations, which we obtained when applying the compo-

nent analysis to 70 EEG samples simul'. Jously. The leading four extracted

components, Z1, Z2, Z3 and Z4 account respectively for 23.0, 16.6, 13.3 and

8.9 per cent of the total variance, and evidently 75 per cent are accounted

for by the seven components given in Table 2.

Multiplying each coefficient by irj we have the correlation coefficient

rij of ith variable and jth component; therefore, the signs of the coeffi-

cients and their relative magnitudes are useful to examine the nature of cam-

ponents.2 In the present results, it may be observed that Z1 sums up infor-

thation on "general development of EEG". Likewise, Z2, Z3, Z4,.. may be named

To get a solution of [2] with a'a = 1 we. must have R - AI singular; in

other words, x must satisfy IR - AID = 0. The function IR - All is a poly-

nomial in A of degree p. Therefore, the equation IR - AID = 0 has p roots;

let these be Al > A2 > Ap.
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respectively "frequency versatility", "amount of irregular slowing", "a-

mount of beta-activities at the occipital region", and so on [See Figure 2].

Figure 2 depicts the scatter diagrams representing relations betweeh

component scores and ages for Groups P, E, D and N. The lines and broken

lines are showing the regression of the scatter diagrams for Group N. What

is evident from these diagrams is that Groups"E and D are retarded in regard

to Z2 as compared with Group N. Furthermore, it is clear that Group D keeps

high amount of occipital beta-waves, contrary to the result of decreasing of

'those waves after 15 years in the other groups. However, definite tendencies

cannot be observed in Group P; that will be one of topics for further dis-

cussion.

Thus, owing to reduction in the dimensions, the classification of EEG

patterns may be discussed economically in terms of a set of ftWer new var-

iables, namely, components. But we think it is satisfactory to cvnsiderthat

the discriminant analysis will be more effective x:o the classification prob-

lem, which will be described in the next section.

3. DISCRIMINANT ANALYSIS

Suppose we have the the vector of p-dimensional measurements X' = [xi,

x2,.., xp] on an individual." We shall now consider the assignment of that

2 The covariance of zd and 1 is Wai'X)X1 = ad'E[W] = ad'R, The vari-

ance of zd is Ad, then the correlation coefficient Rj' = [rij,.., rpj]

should be
ad 'R ad ' Xi L

Rd' = = ad 1,Xd ,

VT. ti

since Rad = >lad is derived from IR - Xj/lav = O.
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individual into one of two normal populations, namely, Trl : N[p1, E] and

: N[112, Z], where pi = [pi,..., up] is the vector of means of the ith

population [i = 1, 2] and E is the matrix of variances and covariances of

each population.

. In this case, if the observation X is actually from Tri, the linear

combination Z = a'X should be distributed according to one-dimensional nor-

mal distribution N[a'pi, aqa]. Then the problem is to classify into either

Tri or Tr2 to minimize the distance la'X epil, between la'X
ar1111 and

la'X -

Since the probability of misclassification, in this case, is the mono-

tonic decreasing function of the Mahalanobis' distance between ni and 12

[a'ul - a'p2]2
A2

=
[4]

a'Ea

the most appropriate weight a' = [al,..., ap] may be obtained by seeking for

a so as to maximize under the restriction of

= 1 .

[5]

Thus wv find

a = KE-1[1.11 - P2]
[6]

where K is the constant. The linear function Z = a'X, thus obtained, is the

well-known discrimin...at function, that is to differentiate best the obser-

vations from two populations, IT1 and 1T2.

The same result may be reached by a different route. The ith normal

density function is

Pi[X]
1

exp[- [X - pi] tz -1 [A,

[2 ,t]2
Iz12..
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Then the ratio of densities is

PI[X] exp[- 41X - pirE-1[X - ul]]

1 [8]
P2[X] exp[- I1X - P2rE-1[X - 112]]

= exp[X'E-1[111 - 112] - 2[111 + 112].E-1[111 - 112]].

The region of classification into IT', which we denote by R,, is the set of X's

for which [8] is k k [for k suitably chosen]. Since the logarithmic function

is monotonic increasing, the inequality can be written in terms of the log-

arithm of [8] as

112] 4[111 112] 1[P1 - 112] ?. log k . [9]

If we denote the left-hand side as U, and if ffi has the density [7]

[i = 1, 2], the best regions of classification are given by

R1: U a log k

R2: U < log k

If a priori probabilities qi and q2 are known, then k is given by

Q2 C[1/2]
k--.

ql C[2/1] ,

[10]

where C[1/2] is the cost of misclassifying an individual from IT2 as from

IT', and C[2/1] is that in the opposite direction.

In the particular case of the two populations being equally likely

and the costs being equal, k = 1 and log k = 0. Then the regions of classi-

fication into IT' and IT2 are respectively

R,: U 0

R2: U < 0

- 7 -
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If the first term of U will be denoted as a, namely,

a = - P2]

then we obtain

1
U = X'a -

2
ipi + 1.12J'a

[13]

[14]

The first term is the discriminant function previously introduced.

Transforming U sligatly, we get

U = [X'L-1p1 - W1E-1111] - [X'E-1p2 - .1tpiE-1112] . [15]

Let us now define

then U may be stated as

1 , -1fi = - piE pi ,

U = f - f2

We may then rewrite the classification procedure as

Ri: f1 ?f2

P.2 fl < f2

[16]

[17) 3

[18]

With using fi's, we may proceed to the classification among m popula-

tions [m ? 3]. The population nk corresponding to the greatest fig, say fk,

among m fi's will be the most appropriate population, to which X should be

allotted. In sich a case, the probability of correct classification into

ni is

exp[fi - max fi]
Pi =

[19]m
E exp[fi - max fi] .

i=1

3 The Mahalanobis'. distance between X and the centroid of ni, if we denote

this by D2i, should be D22 = [X - pi]'t-1[X 1.sd = -2fi. Hence, we

1 , .1 1N 2may also write fi = .2.[X X - D2i) and U = Tfl - F2 = 2 D21].



Things to be investigated will be divided into two cases; the one is

allotting an individual. EEG sample to one of two populations, namely, the

normal and the mentally retarded in general, and-the another is allotting

to one of four populations: P, E, D and N. These are schematically illus-

trated in Figure 3.

The purpose of the analysis is to seek for p linear functions of the

variables, fi, i equals one to p, so that a -sample_ab4rvation can be al-

lotted to appropriate one of p populations, according to which of the f's

is the greatest when the sample values are substituted. Therefore, fi

might be called a measure of proximity to population Iris As is evident

from the upper diagram, in case of two populations, where to allocate a

sample will be decided according to the value of the function U which we

have by taking f2 from f1. If the value of U is positive, the sample

should be allotted to the mentally retarded, and if negative, to the nor-

mal.

The table. in Figure 4 shows the weights and the constant term of U,

which we found by computation in case of two populations, using the sample

data. At tha , Group N2 alone were used for the normal, for the sake of

matching in age to Groups P, E and D. The values given to the whole samples

by the discriminant function Z obtained in this way are also distributed in

Figure 4. It is evident that two distributions for the mentally retarded

samples and far the normal are clearly separated. Therefore, the probabil-

ity of misclassification seems to be estimated as extremely low.

When we proceed to discrimination among four populations, however, re-

sults are more complicated. Table 3 shows the coefficients and the constant

terms of the four linear functions f1, f2, f3 and f4, which we obtained by

computation. From the values given to the samples by four functions, prob-
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abilities of assignment to each one of four populations may be computed

for each sample. These probabilities are tabulated in Table 4. The samples

havifig a some amount of probabilities, large and small, to be assigned to

the other groups are added by dashed lines. Probabilities of assignment to

the normal are 1 for all normal EEG samples, but it can be seen that two
7

samples of Group P and Group D, namely, P-7 and D-14, are misclassified to

the popupation E with the probabilities of 0.618 and 0.945 respectively.

Besides, complicated problem on classification may be pointed out for the

sample E-6. The EEG patterns of those complicated samples classified to E

are shown in Figure 6, comparing with E-8 that is typical of Group E.

Thus, it is concluded that members o: any groups of the mentally re-

tarded were not misclassified to Group N at least in this study. However,

the general veracity of this conclusion is doubtful because such a result

can be drawn merely from sampling bias, which should be the subject for a

future study. We assume that the sampling bias of the normal EEG was the

primary factor affecting the result.

Figure 5 gives the two-dimensional chart for fl through f3 with respect

to which the individuals of the mentally retarded can be classified into

three regions such that

R : U13 > 0; U12 > 0

Re: U12 < 0; U23 > 0 [20]

Rd: U13 < 0; U23 < 0 s

where U12 = fl - f2, U13 = fl f3 and U23 = f2 - f3. The space is divided

by three boundary lines, U12 = 0, U13 =Os U23 = U13 - U12 = 0, intersecting

at a single point.

The dots, squares, and circles represent members of Groups P, E and D,

-10-
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respectively. and those added by sample numbers are the practically or

probably misclassified ones given in Figure 6, What is evident from Figure

5 is that Group E lies in close proximity to Group D, when compared with

the relation: of P to E and P to D. It is consistent with the-results of

the component analysis shown in Figure 2, and such a result can be expected

on pathological and empirical grounds [Hirai and Izawa, 1964].

4, DISCUSSIONS

The following points are left'as future problems: the one is what sort

of multidimensional variables should be introduced to identify and differ-

entiate an individual EEG pattern exactly, and the unbiased sampling also

should carefully be considered; that is another point.

The results of multivariate statistical analysis may be said to depend

finally on those two points. It may be true that the variables we intro-

duced are mere preliminary ones; for that reason, further strict discussion,

from physiological as well as statistical point, will be required on select-

ing appropriate variables. As to the sampling, as well, it becomes a seri-

ous problem that we used the normal EEG samples of the Gibbs' Atlas; those

samples seem to be biased to fewer amount of fast waves and versatility,

which will act in favor of discrimination from samples of the mentally re-

tarded.

The discriminant analysis may also be accomplished by finding the weights

a that maximize the discriminant criterion A, defined by the ratio of the be-

tween-groups to within-groups sums-of-squares of a linear combination t'X.

The criterion A should be

SSb a'Bez

SSw

11 -
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where a and W are the between-groups within-groups SSCP matrices, re-

spectively. The necessary. condition for maximizing X reduces to

which is equivalent to

XW]o = C [22]

[W-113 - = 0 [23]

provided, as will generally be true, that W is non-singular.

Thus, when this equation is solved, we get non-zero eigenvalues, which

will be denoted as XI, X2,.., Xr in descending order of magnitude, and r as-

sociated eigenvectors al, a2,.., ar. The elements of those eigenvectors

may be used as combining weights to form r uncorrelated discriminant func-

tions, the entire set of which constitutes the discriminant space (Rulon,

1967; Tatsuoka, 1971].

For this attempt, the severe restrictions of normality and identical

dispersion matrix in each group are not required; in this respect, this

method exceeds that we used, apart from the discussions of discriminatory

power. It seems to be a worthwhile subject to seek relationship between

two methods in applying to EEG patterns.

-12-
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Table 1.
Variables employed for data processing.

A: Intra-area Variables [LP & LO]

LP

1 X mean wave frequency
2 X2 of wave frequency
3 X

2
mean wave amplitude

4 X
4

3
SD of wave amplitude

5 weighted mean of frequencyl
6 weighted mean of amplitude2
7 sum of DA3
8 mode of frequency [1]4
9 mode of frequency [2]
10 X sum of 8 amplitude
11 XS sum of a amplitude
12 X

6
sum of Si amplitude

13 total amount of 8 waves5
14 total amount of a waves
15 total amount of 01 waves
16 auto-correlation
17 auto-spectrum

X
8

power of 4-7 Hz
X
9

power of 8 Hz
X power of 9-10 Hz
X
10

power of 11-12 Hz
X
11

12
power of 13-19 Hz

X
13

peak frequency

LO

18 X mean wave frequency
19 X

14

15
SD of wave frequency

20 X mean wave amplitude
21 X

16
SD of wave amplitude

22 .1

7
weighted mean of frequency

23 weighted mean of amplitude
24 sum of DA
25 mode of frequency [1]
26 mode of frequency [2]
27 X sum of 8 amplitude
28 X

18
sum of a amplitude

29 X
129

sum of 01 amplitude
30 total amount of 8 waves
31 total amount of a waves
32 total amount of 01 waves
33 auto-correlation
34 auto-spectrum

21
power of 4-7 Hz

"22
power of 8 Hz

X23 power of 9-10 Hz

X24
power of 11-12 Hz

X25 power of 13-19 Hz

X26
peak frequency

Inter-area Variables [LP-LO]

35 cross-correlation 36 cross-spectrum

1 using amplitude as weight
2 using wave duration as weight
3 DA: wave duration multiplied by amplitude
4 [1] frequency which shows the highest peak of sum of amplitude

[2] frequency which shows the highest peak of wave numbers
5 band - width: 0[4.8 Hz], a[8-13 Hz] & 01[13-20 Hz]

-14-
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Figure 1. Data processing of wav_es
and its flow-diagram
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Table 2.
Results of component analysis applied to EEG samples.

1
Z
2

Z
3

Z
4 z5

Z
6

z7

1 -.164
,

-.265 -.214 .165 .168 -.150 .188
2 -.109 -.333 -.168 -.135 .145 -.219 .101
3 -.065 .213 -.367 -.275 -.176 .104 -.054
4 -.037 .022 -.233 -.438 -.203 -.116 .050
5 .141 .228 -.332 -.205 -.105 .088 -.101
6 -.350 .045 -.022 -.080 -.171 .032 -.030
7 -.123 -.168 -.193 -.352 -.024 -.228 .019
8 .099 .254 -.112 .079 J. -.063 -.078 .157
9 -.132 .136 .102 .189 -.238 -.277 .441
10 -.278 .134 .113 .051 -.112 .243 .151
11 -.315 .068 .082 .027 -.024 .306 .109
12 -.247 .050 -.007 -.372 .04.) .123 .326
13 -.294 .117 .080 -.020 .145 -.189 -.242
14 -.196 -.274 .087 -.157 .166 -.095 -.039
15 -.037 -.392 -.180 .041 -.225 .092 .111
16 -.082 .190 -.389 .269 -.024 -.012 -.206
17 -.001 .044 -.352 .223 .428 -.007 .137
18 .144 .299 -.239 .048 .236 .003 .088
19 -.288 .106 -.088 .072 -.008 -.256 -.376
20 -.093 -.280 -.307 .196 .007 .078 -.030
21 .000 -.188 -.205 .301 -.510 .259 .017
22 -.108 .240 -.002 .187 -.165 -.373 .214
23 -.269 .109 .073 .123 -.117 -.192 .048
24 -.234 .045 .067 .070 .103 .378 -.192
25 -.226 .110 -.102 -.011 .330 .279 .328
26 -.308 .013 -.011 .058 -.003 -.034 -.311

X 5.980 4.335 3.476 2.335 1.292 1.231 1.121

A /26 .230 .166 .133 .089 .049 .047 .043

Zak /26 .396 .530 .620 .669 .717 .760

to -
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mean vector 01 mean vector u
2

N
2

weight a
in U

1 0.05248 -0,13295 -0.24660

2 0.47658 -1.20733 0.31724

3 0.11252 -0,28506 0.28110

4 0.10907 -0.27633 -0.18618

5 0.10331 -0.26169 -0.17325
6 -0.05692 0,14419 -0.05455

7 0,17885 -0.45310 -0.00081

3 -0.17876 0.45286 -0.06425

9 -0,26807 0,67913 -0.01910

10 -0.21218 0.53752 -0.11437

11 -0.21247 0.53827 -0.11831

12 -0.06747 0.1709 0.15645

13 -0.18181 0.46056 0.08145

14 0.09548 -0.24187 -0.05142

15 0.33489 -0.84836 0.11653

16 -0.02507 0,06351 0.17912

17 0.07079 -0.17935 -0.04060

18 -0.09239 0.23402 -0.04485

19 -0.07713 0,19539 -0.01324

20 0 "0712 -0.52471 0.05940

21 0.1'5433 -0.13765 -0.07203

22 -0.26977 0.68342 -0.04468

23 -0.11415 0.28916 0.00912

24 -0.01476 0.03741 0.10985

25 -0.07969 0.20190 -0.07484

26 -0.13377 0.33889 -0.10360

constant term of U -0.18768

Mahalanobis' distance 44.11321

prob. of mis;lassification 0.00000

ours it dieril000t foliation

0.6

as

rrr ip
A

s

a

114 :11 111

II II

s

s
s Mon

0
10 1, 10 Ale

s 0.1460 11 41M7$ sa 60.21110 i1 4.116111 114 0.1792, 1, 0.0545, 16
0600061 17 0.4425 is 0.01,10 so .114,7 Ito 0,11111 sil 4,11#5 Ala
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Figure 4. Results of discriminant analysis
in assignment into two populations
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Table. 3.

Coefficients of four linear functions of the variates f
iwhen a sample will be allotted to

one of four populations.

fl f
2

f
3

f
4

1 -3.21223 -1.70721 -4.73777 8.25725
2 5.51442 1.50793 5.75684 -10.72541
3 3.15791 3.56681 4.56734 -9.66987
4 1.87781 -5.30259 -3.32030 6.31740
5 -1.88480 -0.36555 -4.13029 5.55404
6 -1.16677 -1.09835 -0.27543 2.06444
7 -1.34622 -0.55439 1.15727 0.38750
8 -1.08231 -2.64588 0.44676 2.66974
9 0.48790 -0.28345 -0.69710 0.53852

10 -0.31535 -2,60035 -1.62966 4.00583
11 -1.34608 -1.40560 -1.97901 4.05245
12 0.69760 3.79400 1.90643 -5.57898
13 -0.32422 2.90533 0.74993 -2.98014
14 1.45954 -2.00025 -1.09966 1.68953
15 1.32677 8.80853 -3.23178 -5.59030
16 0.20775 1.60024 4.44757 -5.68913
17 1.35211 -1.14910 -1.28686 1.20499
18 2.31651 -0.27492 -2.60211 .0.96760
19 1.86774 2.47589 -3.25302 -0.47992
20 -0.15522 0.44112 1.66944 -1.82678
21 -0.08244 -3.60310 0.27595 2.92482
22 -1.46977 0.65849 -1.00890 1.44881
23 -0.82224 1.83958 -0.50786 -0.51727
24 3.50552 1.92631 0.07033 -4.30573
25 -1.09734 -2.54092 0.04611 2.96390
26 0.45734 -4.19572 -0.63146 3.39018

C1 -5.22886 -3.81538 -2.53466 -11.07762

1 The second term of function fi = X'E-lpi -
1
7 piE

-1
pi
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Table 4.
Probabilities of classification when samples will be

allotted to each one of four populations.

p p p

1

2

3

4

5

6

7 .+El

0.99993
0.99939
1.00000
0.99824
0.99918
0.97467
0.00876

0.00001
1.00042

0.00000
0.00025
0.00023
0.00082
0.61791

0.00007
0.00019
0.00000
0.00151
0.00059
0.02,61

0.37250

8 1.00000 0.00000 0.00000
9 0.80300 0.01264 0.18436

10 0.83053 0.01064 0.13883

11 0.99989 0.00002 0.00011

E 1 0.00001 0.99966 0.00034
2 0.00115 0.96988 0.02897
3 0.00065 0.99599 0.00336
4 0.16471 0.82509 0.01020

5 0.00008 0.99881 0.00112
6 0.37708 0.41097 0.21195

7 0.00014 0.79351 0.20636

8 0.00004 0.93902 0.06094
9 0.00007 0.96553 0.03440

10 0.00001 0.97994 0.02005
11 0.00006 0.99872 0.00121
12 0.00005 0.93809 0.06186
13 0.00090 0.99364 0.00546

D 1 0.29930 0.00114 0.69956

2 0.00526 0.00026 0.99448
3 0.00033 0.00056 0.99911
4 0.14899 0.03791 0.81310

5 0.00034 0.02543 0.97423
6 0.00010 0.03347 0.96643
7 0 00019 0.18173 0.81808

8 0.00202 0.00227 0.99571
9 0.00034 0.28947 0.71019

10 0.01906 0.00422 0.97652
11 0.00000 0.00026 0.99974
12 0.00081 0.00575 0.99344
13 0.00023 0.07799 0.92179
14 E 0.00027 0.94497 0.05476

1 misclassification

-21

p

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00083

0.00003
0.00000

0.00000

0.00000

0.00000
0.00000
0.00000
0.00000

0.00000
0.00000

0.00000

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

0.00000

0.00000
0.00000
0.00000 6-

0.00000
0.00000
0.00000

0.00000
0.00000

0.00021

0.00000
0.00001
0.00000
0.00000



BEST COPY AVAILABLE

Table 4.

Probabilities of classification when samples will be
allotted to each one of four populations.

[continued]

P1 p2 p3 p4

1 0.00000 0.00000 0.00000 1.00000
2 0.00000 0.00000 0.00000 1.00000
3 0.00000 0.00000 0.00000 1.00000
4 0.00000 0.00000 0.00000 1.00000
5 0.00000 0.00000 0.00000 1.00000
6 0.00000 0.00000 0.00000 1.00000
7 0.00000 0.00000 0.00000 1.00000
8 0.00000 0.00000 0.00000 1.00000
9 0.00000 0.00000 0.00000 1.00000
10 0.00000 0.00000 0.00000 1.00000
11 0.00000 0.00000 0.00000 1.00000
12 0.00000 0.00000 0.00000 1.00000
13 0.00000 0.00019 0.00000 0.99981
14 0.00000 0.00000 0.00000 1.00000
15 0.00000 0.00000 0.00000 1.00000
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Figure 5. The regions separating the three
groups of the mentally retarded

-22-



II/
 N

is

p
.::

:::
';'

^e
',"

01
"4

:';
''-

'4
'S

tit
tl.

V
:'1

.1
.1

:6
N

.4
41

4.
1'

,1
64

14
te

iA
tir

ili
..,

1;
:;;

.

1p N

11
11

 1
11

1

k-
-.

...
U

 -
_-

-,
--

 -
.

,..
...

..f
t:.

- 
P-

."
-.

.'
'"

''.
,..

...
'"

''''
.

-

\
qA

' e
'

V
 ,

IF
., 

,-
-'4

,
-,

..,
"-

:,.
.-

--
':-

":
"4

:1
40

.6
4.

"4
.

vi
vo

".
%

.
%

".
.le

s 
'

:
'

'`e
",

".
..

'`1
.`

1.
\.

IT
, :

 -
--

--
...

...
..,

./.
...

: :
. .

...
-"

,.-
 .

...
,-

,,,
,,,

,A
,_

-w
.-

*4
.4

.-
,."

,..
-.

.,4
..,

...
,..

...
..,

,
--

k-
 7

,..
...

.-
v

%
4;

B
p

A
. ;

II:
: .

1:
:

V
O

IV
A

..t
V

 4
I;

r 
:r

.t 
W

ee
r

%
tf

3.
r

r;
7

'
vi

i
LI

B
E

ST
 C

O
PY

 A
V

A
IL

A
B

L
E

11
4 

M
T

if
'

...
.

".
If

(N
,

LT pp

ifu
v°

01
1-

%
0%

.,-
,-

A
"-

-,
,-

1-
..p

A
cr

ed
iu

V
i,-

4,
,tv

eA
r`

,^

pi
p

11
/1

9

IF
V

V
.*

*4
\1

1A
A

V
t

,r
1.

1r
/V

SV
ii\

tp
ri

to
LT IT IF

 ,,
,,.

ve
-4

..-
w

...
"A

P
.tv

er
'4

1.
1.

W
.."

'"V
`i

sp
r

LI
A

-1
14

/1
11

-1
15

V

se

F
i
g
u
r
e
 
6
.

E
E
G
 
p
a
t
t
e
r
n
s
 
m
i
s
c
l
a
s
s
i
f
i
e
d
 
t
o

G
r
o
u
p
 
E
 
[
P
-
7
 
a
n
d
 
D
-
1
4
]

a
s
 
c
o
m
p
a
r
e
d
 
w
i
t
h
 
t
w
o
 
E
-
p
a
t
t
e
r
n
s
,
 
o
n
e
 
t
h
e

"
t
y
p
i
c
a
l
"
[
E
-
8
]

a
n
d
 
t
h
e
 
o
t
h
e
r
 
t
h
e

"
c
o
m
p
l
i
c
a
t
e
d
"
[
E
-
6
]



BEST COPY AVAILABLE

C EEG ANALYSIS ( HISTOGRAM METHOD
DIMENSION FNM(10 p 3) pD (16) pX (700 p 2) pR (3) IAV (2) pSD (2) pASP (30,2) pFREQ

1(2) ,AMP (2) ,SF (2) ,SA(2) /TH(2) ,BE (2) I

2N (2) pNUM (700) pliSP (30/2) pNAV(2) pNSD (2) ,Nni (2) pNAL (2) pNBE (2)

DO 10 J=1,3
READ (2,101) (FNM (I ,J) ,I=11 110)

101 FORMAT (10118)
10 CONTINUE

31:1
16 I1=0
14 READ (2,102) (D (I) 11=146)

102 FORMAT (16F5.0)

DO 12 1=1/16
IF (D (I) .EQ.0.01) GO TO 13

I1=I1+1
12 X (IL J) =D (I)

GO TO 14
13 I2=I+1

N (J) =I1

IF (J.EQ. 2) GO TO 15

3=2
IF (I.EQ. 16) GO TO 16

I1=0
DO 17 1=12,16
I1=I1+1

17 X (ILJ)=D(I)
GO TO 14

15 IF (N(1) .LE.N(2) ) NDIN(1)

IF (N (1) .GT.N (2) ) NSIN (2)

COV=0.0
DO 18 J=112
AV (J) =0.0

SD (J) =0.0

DO 18 Tel, NS

AV (J) =AV (3) +X (1on
18 SD (J) SD (J) +X (Lt7)**2

CO 19 IIILNS
19 CCW=Cati+X (1 p 1) *X (1 p 2)

SPINS
R (1) (CatritSNAV (1) *AV(2) )/sgtr( (SD (1) *SNAV (1) * *2) *

1 (SD (2) *SPAV (2) **2) )

DO 20 J=112
NO=0
NSN (J)
FREQ (3)=0.0

MT (3)=0.0
SE' (J) =0.0

SA (7)4.0
NTH (J)

NAL (J) =0

NBE (CT)=0
TH (3) =0.0

AL (3)=04
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BEIJ)=0.0
DO 21 1=1,30
ASP(I07)=0.0

21 NSP(I,J) =0

DO 22 1=1,700
22 NUM(I)=I
32 I=1

K=1
25 I1=I+1

IF(X(I,J),Ii%K(I107)) GO TO 23
I=I+1

IF(I.EQ.NS) GO TO 24
GO TO 25

23 X(K,J)=X(I,J)

XMIN1=X(I,J)
KS=NUM(I)

27 1=1+1

IF(I.EQ.NS) GO TO 24
I1=I+1

IF(X(I03).GT.X(I1/J)) GO TO 26
GO TO 27

26 XMAX=X(I,J)

K1 =NUM (I)

29 1=1+1

IF(I.EQ.NS) GO TO 24
I1=I+1

IFIX(I07).LT.X(I107)) GO TO 28
GO TO 29

28 XMIN2=X(I,J)
K2=NUM(I)

G1=FLOAT(K1KS)
G2=FLOAT(K2KS)
A=XMAX...XMIN1001*(XMIN2XMIN1)/G2
G1=60.0/G2
MF=G1
FREQ(J)=FREQ(J)+G1
AMP(J)=AMP(J)+A

SF(J)=SFIJ)+G1**2
SA (J) =SA (I) +A**2

NO=N0+1
IF(MF.LT.1) GO TO 30
MF(4F.GT.30) GO TO 30
ASP(W,J)=ASP(MF,J)+A
NSP(MF,J)=INSP(C,J)+1

30 NUM(K)=KS
K=K+1
NUM(K)=K2
XMIN1=XMIN2
X(K07)=XMIN2
KS=K2
GO TO 27

24 IF(K.LT.3) GO TO 31
NS=K
GO TO 32

31 BNuNO

PREQ (J) =FREQ (J) /13N
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AMP(J)=AMP(J)/EN
SF(3)=SF13)/FOTREQ(3)**2
SA(3)=SA(J)/BNAMP(J)**2
DO 33 1=40
TH(J)=TH(J)+ASP(I,J)

33 NTH(J)miNTH(J)+NSP(I,J)
D0.34 1=8,12
A1(J)=AL(J)+ASP(I,J)

34 NAL(J)=NAL(J)+NSP(I,J)
DO 35 Im13,19
BE (J) =BE (7) +ASP (I,J)

35 NBE(J)mNBE(J)+NSP(I,J)
20 CONTINUE

. DO 36 3=1,2

W(7)8110.0

SD(3)=0.0
NAV(J)=0
NSD(J)n0
DO 36 I=1,30
W.7(7)=AV(3)+ASP(IpI)

SD (J) =SD (J) +ASP (1 07) **2

NAV(J)=NAV(J)+NSP(I,J)
36 NSD(J) =NSD(J)+NSP(I,J) * *2

CCV=0.0
NC0110

DO 37 I-1,30
CathoCCV+ASP(I,1)*ASP(I12)

37 NO"NO+NSP(I,1)*NSP(I,2)
R(2)gICO1 *30.0AV(1)*AV(2))/SORT((S0(1)*30.0AV(1)**2)
1*(SD(2)*30.0AV(2)**2))
COVIINO

DO 9 1=112
AV(I)=NAV(I)

9 SD(I)=NSD(I)
R(3)=(COV*30.0...AV(1)*AV(2))/SORT((SD(1)*30.0AV(1)**2)
1*(SD(2)*30.0AV(2)**2))
WRITE(31300) (F41(I,L),I-1,10)

300 FORMAT(1H7,10A8/1H2,2X110HMEAN FREQ.,10MHSDOX19HMEAN AMP.,
110X12HSD,2(7X,5HTHETAOXAHALPHAAXAME1A))
DO 38 17=1,2

WRITE (3,301) FREQ 01 'AMP (J) SA (47) (J)

1AL (J) BE (J) ,NTH (J) etati(J) ttIBE (j)

301 FOR4NT(1H2,7F12.4,3I12)
38 CONTINUE

WRITE(3,302) (R(I),Im1,3)
302 FCeMAT(1H3,1X,11HCORRELATION0F12.4)

IF(L.EQ.3) GO TO 11
1P14+1

13-1

IF(I2.EQ.17) GO TO 16
I1n0
DO 39 1.12,16
I1nI1+1

39 X(I14)111D(I)

GO TO 14
11 STOP

END
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